一、科研项目
1.1 2021年度湖北省教育厅科学技术研究计划重点项目
1.2 2021年度纺织纤维及制品教育部重点实验室开放课题
1.3 2021年度图像信息处理与智能控制教育部重点实验室项目
1.4 2020年度省部共建纺织新材料与先进加工技术国家重点实验室项目
1.5 2020年度复杂系统先进控制与智能自动化湖北省重点实验室项目
1.6 2020年度湖北省数字化纺织装备重点实验室重点项目
1.7 2021年度智能机器人湖北省重点实验室创新基金项目
1.8 2021年度武汉工程大学科学研究基金
二、学术论文
2.1 期刊论文
[1]J. Li, L. Wang, Z. Chen and Z. Huang, "Drift Suppression Control Based on Online Intelligent Optimization for Planar Underactuated Manipulator With Passive Middle Joint," in IEEE Access, vol. 9, pp. 38611-38619, 2021, doi: 10.1109/ACCESS.2021.3064336.
Abstract: We consider the position control problem of the planar 3R manipulator with the middle passive joint, whose dynamic constraint is caused by the second-order non-holonomic characteristic. A drift suppression control method with two stages is proposed for positioning the system. First, we give the dynamic model and the target angle of the system solution algorithm. Then, the controllers are designed to make the active links reach to their desired states, and the second link is rotating freely caused by the drift. So, the parametric trajectory is planned to suppress the drift of the second link and tracking this trajectory can makes all links reach to their desired states. Next, we use the differential evolution algorithm to search for the suitable parameters of the parametric trajectory taking the coupling constraints among all links. Then the controllers are designed to track the planned trajectories, so that all links can be controlled to the desired states simultaneously. Finally, numerical simulation results illuminate the effectiveness of the proposed method.
[2]Zixin Huang, Xuzhi Lai, Pan Zhang, Qingxin Meng, Min Wu. A general position control strategy for a planar 3-DoF underactuated manipulators with one passive joint [J]. Information Sciences,2020, 534: 139-153.
Abstract: This paper presents a general control strategy based on the trajectory planning and tracking control for the planar 3-DoF underactuated manipulators with one passive joint at different position. According to the target position of the system, a set of target angles of all links are quickly obtained by using differential evolution algorithm. In order to achieve the control objective of the system from the initial position to the target position, we design the trajectory for each active link of the system, which is composed of two parts. The first part of the trajectory is designed according to the initial and target angle of the active link. The second part of the trajectory is designed based on the constraints between the passive joint and the active joints. Meanwhile, the parameters of the trajectories are optimized by the differential evolution algorithm to ensure that all links reach to their target angles eventually by tracking the designed trajectories. Then, the sliding mode variable structure controllers are designed to make all active links track their trajectories. The effectiveness of the proposed strategy is demonstrated through simulation results.
[3]Zixin Huang, Xuzhi Lai, Yawu Wang, Pan Zhang, Min Wu. Virtual model reduction-based control strategy of planar three-link underactuated manipulator with middle passive joint[J]. International Journal of Control, Automation, and System, 2021, 19(1): 29-39.
Abstract:This paper presents a position control strategy for a planar active-passive-active (APA) underactuated manipulator with second-order nonholonomic characteristics. According to the structural characteristics of the planar APA system, we divide the system into two parts: a planar virtual Pendubot (PVP) and a planar virtual Acrobot (PVA). For the PVP, we mainly fulfill the target angle of the first link, which is calculated through the geometry method, and make the system stable. In this stage, via keeping the states of the third link being zero, the system is reduced to the PVP. Meanwhile, we design an open-loop control law based on the nilpotent approximation (NA) model of the PVP to make the second link stable and the first link stabilize at its target angle. Then, the planar APA system is reduced to a PVA with all links’ angular velocities being zero. For the PVA, we mainly realize the other two links’ target angles obtained via the particle swarm optimization (PSO) algorithm. Thus, the control objective of the planar APA system is achieved. Finally, above control strategy is verified by simulation results.
[4]黄自鑫, 赖旭芝, 王亚午, 吴敏. 基于轨迹规划的平面三连杆欠驱动机械臂位置控制[J]. 控制与决策, 2020, 35(2): 382-388.
摘要:针对中间关节为欠驱动的二阶非完整平面三连杆机械臂,提出一种基于轨迹规划的末端点位置控制策略.首先,建立系统的动力学模型,并根据几何关系利用差分进化算法求取所有连杆与目标位置相对应的目标角度;然后,根据驱动关节与欠驱动关节的耦合关系,采用时间缩放法和双向法分别规划两根驱动连杆的两条轨迹,并利用遗传算法优化合适的第1连杆中间位置,将两条轨迹拼接成一条完整可达轨迹;最后,设计滑模变结构控制器以跟踪完整可达轨迹,实现系统从初始位置到目标位置的控制目标.数值仿真结果表明了所提出控制策略的有效性.
[5]黄自鑫, 赖旭芝, 王亚午, 吴敏. 二阶非完整平面3R欠驱动机械臂位置控制[J]. 东南大学学报(自然科学版), 2019, 49(2): 245-250.
摘要:为解决中间关节是欠驱动的平面3R机械臂末端点位置控制问题,提出了一种基于轨迹规划与跟踪控制方法.根据系统数学模型、几何关系和期望位置,利用差分进化算法求解所有连杆的目标角度.首先,构造Lyapunov函数设计控制器使得第一、第三连杆到达目标角度;然后,根据系统约束关系,对第一连杆进行轨迹规划,并利用差分进化算法优化轨迹参数;当第一连杆跟踪轨迹后,第二连杆被间接控制到目标角度.最后,基于Lyapunov函数设计控制器使第一连杆跟踪规划轨迹,并维持第三连杆状态不变,使系统末端点从给定初始位置到给定期望位置.仿真实验表明,在33.94 s时,系统末端点能够稳定到目标位置(0.2,0.8) m,对于不同的初始位置和期望位置,轨迹规划与跟踪控制方法同样有效.
[6]黄自鑫,秦翔宇, 陈振, 王乐君. 基于智能优化算法的欠驱动机械臂位姿控制[J]. 控制工程,DOI:10.14107/j.chki.kzgc.20200700.
摘要:针对中间关节为欠驱动的平面机械臂系统,提出一种基于轨迹规划和跟踪控制的位姿控制策略,实现了系统位姿控制目标。根据系统控制目标,针对驱动连杆设计一条连续的运动轨迹。其中,为了实现驱动连杆的控制目标,根据驱动连杆的初始和目标角度设计第一部分的运动轨迹;为了同时实现欠驱动连杆的控制目标,设计第二部分带有可调参数的轨迹。同时,通过差分进化算法对轨迹参数进行优化。并设计滑模变结构控制器使驱动连杆跟踪设计的运动轨迹达到目标状态。最后,仿真结果验证了该策略的有效性。
[7]黄自鑫, 王乐君. 一类平面欠驱动机械系统控制方法综述[J]. 武汉工程大学学报, 2021, 43(4): 448-454.
摘要:欠驱动机械系统是机器人和非线性系统控制的研究热点,笔者对一类含有单一被动关节的平面欠驱动机械臂系统的控制方法的研究现状进行综述。给出了平面欠驱动机械臂的动力学模型和结构特点,并介绍了积分特性;根据积分特性将平面欠驱动机械臂分为完整系统、一阶非完整系统和二阶非完整系统,并对现有运动控制方法展开分析和讨论;在此基础上,对平面欠驱动机械臂系统控制存在的问题进行了简要分析,针对未来研究方向进行了展望,如统一的控制策略,多被动关节平面机械臂控制,多平面欠驱动机械臂控制,空间欠驱动机械臂控制,鲁棒策略和实验验证。
[8]黄自鑫, 秦翔宇, 王乐君. 二阶非完整平面欠驱动机械系统的位置控制[J]. 武汉工程大学学报, 2021, 43(5): 567-572.
摘要:针对中间关节为欠驱动的二阶非完整平面三连杆机械系统提出一种基于模型降阶的分段控制策略。首先,控制欠驱动关节到达目标位置,并控制第三连杆角度和角速度为零,将系统降阶为平面虚拟Pendubot系统;其次,依据平面Pendubot系统的幂零近似特性,设计一个周期开环迭代镇定控制器,使平面虚拟Pendubot系统两连杆的角速度都收敛为零的同时,欠驱动关节又回到目标位置,从而使平面三连杆系统降阶为初始速度为零的平面虚拟Acrobot系统。然后,根据平面虚拟Acrobot系统的运动状态约束关系,利用在线粒子群优化算法求取两连杆的目标角度;接着,针对第三连杆设计控制器实现平面虚拟Acrobot系统的控制目标,从而实现整个系统的控制目标,仿真结果验证所提出控制策略的有效性。
[9]Huang, Z.; Li, X.; Wang, J.; Zhang, Y.; Mei, J. Human Pulse Detection by a Soft Tactile Actuator[J]. Sensors,2022,22, 5047.
Abstract:Soft sensing technologies offer promising prospects in the fields of soft robots, wearable devices, and biomedical instruments. However, the structural design, fabrication process, and sensing algorithm design of the soft devices confront great difficulties. In this paper, a soft tactile actuator (STA) with both the actuation function and sensing function is presented. The tactile physiotherapy finger of the STA was fabricated by a fluid silica gel material. Before pulse detection, the tactile physiotherapy finger was actuated to the detection position by injecting compressed air into its chamber. The pulse detecting algorithm, which realized the pulse detection function of the STA, is presented. Finally, in actual pulse detection experiments, the pulse values of the volunteers detected by using the STA and by employing a professional pulse meter were close, which illustrates the effectiveness of the pulse detecting algorithm of the STA.
2.2 会议论文
[1] Z. Huang, Y. Zhou, Z. Chen, W. Wang and L. Wang, "An Universal Control Strategy for Planar 2-DoF Underactuated Manipulator with One Passive Joint"2021 40th Chinese Control Conference (CCC), 2021, pp. 468-472.
Abstract:This paper presents an unified control strategy based on the trajectory planning and tracking control for the planar 2-Do F underactuated manipulator. The trajectory of the active link is composed of two parts. The first part trajectories are designed according to the initial and target angles of the active link. The second part trajectories are designed based on the constraints between the underactuated link and the active link. Meanwhile, the parameters of the trajectories are optimized by the differential evolution algorithm(DEA) to ensure all links eventually reach to their target values by tracking the designed trajectories. Then,the sliding mode variable structure controller are designed to make the active link track their trajectories. The effectiveness of such strategy is demonstrated through simulation results.
URL
[2] Z. Huang, Z. Chen, J. Li and L. Wang, "Comprehensive unified control strategy for planar 2-link underactuated manipulators"2021 33rd Chinese Control and Decision Conference (CCDC), 2021, pp. 4514-4518.
Abstract:This paper presents a unified control strategy based on the trajectory planning and tracking control for the planar 2-link underactuated manipulator. The trajectory of the active link is composed of two parts. The first part trajectories are designed according to the initial and target angles of the active link. The second part trajectories are designed based on the constraints between the underactuated link and the active link. Meanwhile, the parameters of the trajectories are optimized by the differential evolution algorithm (DEA) to ensure all links eventually reach to their target values by tracking the designed trajectories. Then, the sliding mode variable structure controller is designed to make the active link track their trajectories. The effectiveness of such strategy is demonstrated through simulation results.
URL
[3] Z. Huang, S. Wei, Y. Chen and L. Wang, "Motion Planning and Tracking Control of Space Underactuated Manipulator via Intelligent Algorithm,"2021 China Automation Congress (CAC), 2021, pp. 2190-2193.
[4] Z. Huang, X. Qin, L. Wang and P. Zhang, "A general control strategy of planar multi-link underactuated manipulator with passive last joint based on nilpotent approximation and intelligent optimization,"2020 Chinese Automation Congress (CAC), 2020, pp. 4029-4031.
[5] Huang, Z., Qin, X., Wei, S., Wang, L. (2023). A Finite-Time Posture Control Strategy for the Swarm Underactuated Robots. In: Ren, Z., Wang, M., Hua, Y. (eds) Proceedings of 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control. Lecture Notes in Electrical Engineering, vol 934. Springer, Singapore.
[9] Zixin Huang, Yaosheng Zhou, Zhen Chen, Wei Wang, Lejun Wang. An universal control strategy for planar 2-DoF underactuated manipulator with one passive joint[C]. China Control Conference, Shanghai, China, 2021.
[10] Zixin Huang, Shaoqi Wei, Yanfei Chen, Lejun Wang. Motion planning and tracking control of space underactuated manipulator via intelligent algorithm[C]. Chinese Automation Congress, Beijing, China, 2021.
[11] Zixin Huang, Zhen Chen, Juan Li, Lejun Wang. Comprehensive unified control strategy for plananr 2-link underactuated manipulators[C]. Asian Control Conference, Kunming, China, 2021.
三、专利软著
3.1 一种防低温烫伤的智能电加热服
3.2 基于生理传感器的智能感知服饰监测软件V1.0
3.3 多功能智能服饰系统监测软件V1.0
3.4 智能电加热服监控软件V1.0
四、科研荣誉
4.1 CCSICC优秀审稿专家
4.2 2021CAC REVIEWER
4.3 IEEE Member
4.4 2022 7th Asia-Pacific Conference on Intelligent Robot Systems Publicity Chair
五、教学荣誉
5.1 中国工程机器人大赛暨国际公开赛优秀指导教师
5.2 “赓续百年初心 担当育人使命”主题征文大赛优秀奖
5.3 2021武汉工程大学学年度优秀班主任
六、创新创业
6.1 国家级奖项
6.1.1 2020年中国工程机器人暨国际公开赛 一等奖 一项
6.1.2 2021年中国工程机器人暨国际公开赛 一等奖 一项
6.1.3 2021年 中国机器人及人工智能大赛 一等奖 一项
6.1.4 2021年“云说新科技”科普大赛 科普新星(全国十强) 一项
6.1.5 2021年“云说新科技”科普大赛 网络人气之星 一项
6.1.6 2022年中国机器人 一等奖 一项
6.1.7 2021年第十七届“挑战杯”竞赛“揭榜挂帅”专项赛 二等奖 一项
6.1.8 2021年中国工程机器人暨国际公开赛 二等奖 两项(1,2)
6.1.9 2022年中国机器人及人工智能大赛 二等奖 一项
6.1.10 2021年智慧健康养老创新创业大赛 铜奖 一项
6.1.11 2021年中国机器人及人工智能大赛 三等奖 一项
6.1.12 2021年中国工程机器人暨国际公开赛 三等奖 一项
6.1.13 2022年中国机器人 三等奖 三项(1,2,3)
6.1.14 2022年中国机器人及人工智能大赛 二等奖 一项
6.2 省部级奖项
6.2.1 2021年中国机器人及人工智能大赛 二等奖 一项
6.2.2 2021中国机器人及人工智能大赛 三等奖 两项(1,2)
6.2.3 2021“云说新科技”科普大赛 二等奖 一项
6.2.4 2022中国机器人及人工智能大赛 二等奖 二项(1,2)
6.2.5 2021“云说新科技”科普大赛 三等奖 三项(1,2,3)
6.2.6 2021“华中杯”大学生数学建模挑战赛 三等奖 一项
6.2.7 2021全国大学生计算机设计大赛 三等奖 一项
6.2.8 2021“互联网+”大学生创新创业大赛 铜奖 一项
6.2.9 2021全国大学生电子设计“TI”杯湖北赛区 三等奖 一项
6.2.10 2022年中国大学生计算机设计大赛 二等奖 两项(1,2)
6.2.11 2022年 中国大学生计算机设计大赛 三等奖 一项
6.2.4 2022中国机器人及人工智能大赛 三等奖 二项(1,2)